
W
he

re
 to

 S
ta

rt

 3

We’ve designed this book to occupy a specific niche in the vast ecosystem of man
pages, blogs, magazines, books, and other reference materials that address the needs
of UNIX and Linux system administrators.

First, it’s an orientation guide. It reviews the major administrative systems, identifies
the different pieces of each, and explains how they work together. In the many cases
where you must choose among various implementations of a concept, we describe
the advantages and drawbacks of the most popular options.

Second, it’s a quick-reference handbook that summarizes what you need to know
to perform common tasks on a variety of common UNIX and Linux systems. For
example, the ps command, which shows the status of running processes, supports
more than 80 command-line options on Linux systems. But a few combinations
of options satisfy the majority of a system administrator’s needs; we summarize
them on page 98.

Finally, this book focuses on the administration of enterprise servers and networks.
That is, serious, professional system administration. It’s easy to set up a single system;
harder to keep a distributed, cloud-based platform running smoothly in the face of
viral popularity, network partitions, and targeted attacks. We describe techniques

1 Where to Start

4 Chapter 1 Where to Start

and rules of thumb that help you recover systems from adversity, and we help you
choose solutions that scale as your empire grows in size, complexity, and heterogeneity.

We don’t claim to do all of this with perfect objectivity, but we think we’ve made our
biases fairly clear throughout the text. One of the interesting things about system
administration is that reasonable people can have dramatically different notions of
what constitutes the most appropriate solution. We offer our subjective opinions
to you as raw data. Decide for yourself how much to accept and how much of our
comments apply to your environment.

1.1 Essential duties of a system administrator
The sections below summarize some of the main tasks that administrators are
expected to perform. These duties need not necessarily be carried out by a single
person, and at many sites the work is distributed among the members of a team.
However, at least one person should understand all the components and ensure
that every task is performed correctly.

Controlling access
The system administrator creates accounts for new users, removes the accounts of
inactive users, and handles all the account-related issues that come up in between
(e.g., forgotten passwords and lost key pairs). The process of actually adding and
removing accounts is typically automated by a configuration management system
or centralized directory service.

Adding hardware
Administrators who work with physical hardware (as opposed to cloud or hosted
systems) must install it and configure it to be recognized by the operating system.
Hardware support chores might range from the simple task of adding a network
interface card to configuring a specialized external storage array.

Automating tasks
Using tools to automate repetitive and time-consuming tasks increases your effi-
ciency, reduces the likelihood of errors caused by humans, and improves your ability
to respond rapidly to changing requirements. Administrators strive to reduce the
amount of manual labor needed to keep systems functioning smoothly. Familiarity
with scripting languages and automation tools is a large part of the job.

Overseeing backups
Backing up data and restoring it successfully when required are important admin-
istrative tasks. Although backups are time consuming and boring, the frequency of
real-world disasters is simply too high to allow the job to be disregarded.

See Chapters 8,
17, and 23 for in-
formation about user
account provisioning.

See Chapter 7,
Scripting and the
Shell, for informa-
tion about scripting
and automation.

See page 788 for
some tips on per-
forming backups.

 Essential duties of a system administrator 5

W
he

re
 to

 S
ta

rt

Operating systems and some individual software packages provide well-established
tools and techniques to facilitate backups. Backups must be executed on a regular
schedule and restores must be tested periodically to ensure that they are function-
ing correctly.

Installing and upgrading software
Software must be selected, installed, and configured, often on a variety of oper-
ating systems. As patches and security updates are released, they must be tested,
reviewed, and incorporated into the local environment without endangering the
stability of production systems.

The term “software delivery” refers to the process of releasing updated versions of
software—especially software developed in-house—to downstream users. “Continu-
ous delivery” takes this process to the next level by automatically releasing software
to users at a regular cadence as it is developed. Administrators help implement ro-
bust delivery processes that meet the requirements of the enterprise.

Monitoring
Working around a problem is usually faster than taking the time to document and
report it, and users internal to an organization often follow the path of least resis-
tance. External users are more likely to voice their complaints publicly than to open
a support inquiry. Administrators can help to prevent both of these outcomes by
detecting problems and fixing them before public failures occur.

Some monitoring tasks include ensuring that web services respond quickly and
correctly, collecting and analyzing log files, and keeping tabs on the availability of
server resources such as disk space. All of these are excellent opportunities for au-
tomation, and a slew of open source and commercial monitoring systems can help
sysadmins with these tasks.

Troubleshooting
Networked systems fail in unexpected and sometimes spectacular fashion. It’s the
administrator’s job to play mechanic by diagnosing problems and calling in sub-
ject-matter experts as needed. Finding the source of a problem is often more chal-
lenging than resolving it.

Maintaining local documentation
Administrators choose vendors, write scripts, deploy software, and make many oth-
er decisions that may not be immediately obvious or intuitive to others. Thorough
and accurate documentation is a blessing for team members who would otherwise
need to reverse-engineer a system to resolve problems in the middle of the night.
A lovingly crafted network diagram is more useful than many paragraphs of text
when describing a design.

See Chapter 6 for
information about
software management.

See Chapter 26
for information
about software
deployment and
continuous delivery.

See Chapter 28
for information
about monitoring.

See page 428 for an
introduction to net-
work troubleshooting.

See page 1115 for
suggestions regarding
documentation.

6 Chapter 1 Where to Start

Vigilantly monitoring security
Administrators are the first line of defense for protecting network-attached sys-
tems. The administrator must implement a security policy and set up procedures
to prevent systems from being breached. This responsibility might include only a
few basic checks for unauthorized access, or it might involve an elaborate network
of traps and auditing programs, depending on the context. System administrators
are cautious by nature and are often the primary champions of security across a
technical organization.

Tuning performance
UNIX and Linux are general purpose operating systems that are well suited to al-
most any conceivable computing task. Administrators can tailor systems for optimal
performance in accord with the needs of users, the available infrastructure, and the
services the systems provide. When a server is performing poorly, it is the admin-
istrator’s job to investigate its operation and identify areas that need improvement.

Developing site policies
For legal and compliance reasons, most sites need policies that govern the accept-
able use of computer systems, the management and retention of data, the privacy
and security of networks and systems, and other areas of regulatory interest. System
administrators often help organizations develop sensible policies that meet the letter
and intent of the law and yet still promote progress and productivity.

Working with vendors
Most sites rely on third parties to provide a variety of ancillary services and prod-
ucts related to their computing infrastructure. These providers might include
software developers, cloud infrastructure providers, hosted software-as-a-service
(SaaS) shops, help-desk support staff, consultants, contractors, security experts, and
platform or infrastructure vendors. Administrators may be tasked with selecting
vendors, assisting with contract negotiations, and implementing solutions once the
paperwork has been completed.

Fire fighting
Although helping other people with their various problems is rarely included in a
system administrator’s job description, these tasks claim a measurable portion of
most administrators’ workdays. System administrators are bombarded with prob-
lems ranging from “It worked yesterday and now it doesn’t! What did you change?”
to “I spilled coffee on my keyboard! Should I pour water on it to wash it out?”

In most cases, your response to these issues affects your perceived value as an ad-
ministrator far more than does any actual technical skill you might possess. You
can either howl at the injustice of it all, or you can delight in the fact that a single

See Chapter 27 for
more information
about security.

See Chapter 29 for
more information
about performance.

See the sections start-
ing on page 17 for
information about
local policy-making.

 Suggested background 7

W
he

re
 to

 S
ta

rt

well-handled trouble ticket scores more brownie points than five hours of midnight
debugging. Your choice!

1.2 Suggested background
We assume in this book that you have a certain amount of Linux or UNIX experi-
ence. In particular, you should have a general concept of how the system looks and
feels from a user’s perspective since we do not review that material. Several good
books can get you up to speed; see Recommended reading on page 28.

We love well-designed graphical interfaces. Unfortunately, GUI tools for system
administration on UNIX and Linux remain rudimentary in comparison with the
richness of the underlying software. In the real world, administrators must be com-
fortable using the command line.

For text editing, we strongly recommend learning vi (now seen more commonly
in its enhanced form, vim), which is standard on all systems. It is simple, powerful,
and efficient. Mastering vim is perhaps the single best productivity enhancement
available to administrators. Use the vimtutor command for an excellent, interac-
tive introduction.

Alternatively, GNU’s nano is a simple and low-impact “starter editor” that has on-
screen prompts. Use it discreetly; professional administrators may be visibly dis-
tressed if they witness a peer running nano.

Although administrators are not usually considered software developers, industry
trends are blurring the lines between these functions. Capable administrators are
usually polyglot programmers who don’t mind picking up a new language when
the need arises.

For new scripting projects, we recommend Bash (aka bash, aka sh), Ruby, or Python.
Bash is the default command shell on most UNIX and Linux systems. It is primitive
as a programming language, but it serves well as the duct tape in an administrative
tool box. Python is a clever language with a highly readable syntax, a large devel-
oper community, and libraries that facilitate many common tasks. Ruby developers
describe the language as “a joy to work with” and “beautiful to behold.” Ruby and
Python are similar in many ways, and we’ve found them to be equally functional for
administration. The choice between them is mostly a matter of personal preference.

We also suggest that you learn expect, which is not a programming language so
much as a front end for driving interactive programs. It’s an efficient glue technol-
ogy that can replace some complex scripting and is easy to learn.

Chapter 7, Scripting and the Shell, summarizes the most important things to
know about scripting for Bash, Python, and Ruby. It also reviews regular expres-
sions (text matching patterns) and some shell idioms that are useful for sysadmins.

See Chapter 7
for an introduc-
tion to scripting.

8 Chapter 1 Where to Start

1.3 Linux distributions
A Linux distribution comprises the Linux kernel, which is the core of the operating
system, and packages that make up all the commands you can run on the system.
All distributions share the same kernel lineage, but the format, type, and number
of packages differ quite a bit. Distributions also vary in their focus, support, and
popularity. There continue to be hundreds of independent Linux distributions, but
our sense is that distributions derived from the Debian and Red Hat lineages will
predominate in production environments in the years ahead.

By and large, the differences among Linux distributions are not cosmically sig-
nificant. In fact, it is something of a mystery why so many different distributions
exist, each claiming “easy installation” and “a massive software library” as its dis-
tinguishing features. It’s hard to avoid the conclusion that people just like to make
new Linux distributions.

Most major distributions include a relatively painless installation procedure, a desk-
top environment, and some form of package management. You can try them out
easily by starting up a cloud instance or a local virtual machine.

Much of the insecurity of general-purpose operating systems derives from their
complexity. Virtually all leading distributions are cluttered with scores of unused
software packages; security vulnerabilities and administrative anguish often come
along for the ride. In response, a relatively new breed of minimalist distributions
has been gaining traction. CoreOS is leading the charge against the status quo and
prefers to run all software in containers. Alpine Linux is a lightweight distribution
that is used as the basis of many public Docker images. Given this reductionist trend,
we expect the footprint of Linux to shrink over the coming years.

By adopting a distribution, you are making an investment in a particular vendor’s
way of doing things. Instead of looking only at the features of the installed software,
it’s wise to consider how your organization and that vendor are going to work with
each other. Some important questions to ask are:

• Is this distribution going to be around in five years?
• Is this distribution going to stay on top of the latest security patches?
• Does this distribution have an active community and sufficient documentation?
• If I have problems, will the vendor talk to me, and how much will that cost?

Table 1.1 lists some of the most popular mainstream distributions.

The most viable distributions are not necessarily the most corporate. For example,
we expect Debian Linux (OK, OK, Debian GNU/Linux!) to remain viable for a long
time despite the fact that Debian is not a company, doesn’t sell anything, and offers
no enterprise-level support. Debian benefits from a committed group of contributors
and from the enormous popularity of the Ubuntu distribution, which is based on it.

A comprehensive list of distributions, including many non-English distributions,
can be found at lwn.net/Distributions or distrowatch.com.

See Chapter 25,
Containers, for more
information about
Docker and containers.

Table 1.1 Most popular general-purpose Linux distributions

Distribution Web site Comments

Arch archlinux.org For those who fear not the command line
CentOS centos.org Free analog of Red Hat Enterprise
CoreOS coreos.com Containers, containers everywhere
Debian debian.org Free as in freedom, most GNUish distro
Fedora fedoraproject.org Test bed for Red Hat Linux
Kali kali.org For penetration testers
Linux Mint linuxmint.com Ubuntu-based, desktop-friendly
openSUSE opensuse.org Free analog of SUSE Linux Enterprise
openWRT openwrt.org Linux for routers and embedded devices
Oracle Linux oracle.com Oracle-supported version of RHEL
RancherOS rancher.com 20MiB, everything in containers
Red Hat Enterprise redhat.com Reliable, slow-changing, commercial
Slackware slackware.com Grizzled, long-surviving distro
SUSE Linux Enterprise suse.com Strong in Europe, multilingual
Ubuntu ubuntu.com Cleaned-up version of Debian

 Example systems used in this book 9

W
he

re
 to

 S
ta

rt

1.4 Example systems used in this book
We have chosen three popular Linux distributions and one UNIX variant as our
primary examples for this book: Debian GNU/Linux, Ubuntu Linux, Red Hat En-
terprise Linux (and its dopplegänger CentOS), and FreeBSD. These systems are
representative of the overall marketplace and account collectively for a substantial
portion of installations in use at large sites today.

Information in this book generally applies to all of our example systems unless a
specific attribution is given. Details particular to one system are marked with a logo:

Debian GNU/Linux 9.0 “Stretch”

Ubuntu® 17.04 “Zesty Zapus”

Red Hat® Enterprise Linux® 7.1 and CentOS® 7.1

FreeBSD® 11.0

Most of these marks belong to the vendors that release the corresponding software
and are used with the kind permission of their respective owners. However, the
vendors have not reviewed or endorsed the contents of this book.

RHEL

1.3 Linux distributions
A Linux distribution comprises the Linux kernel, which is the core of the operating
system, and packages that make up all the commands you can run on the system.
All distributions share the same kernel lineage, but the format, type, and number
of packages differ quite a bit. Distributions also vary in their focus, support, and
popularity. There continue to be hundreds of independent Linux distributions, but
our sense is that distributions derived from the Debian and Red Hat lineages will
predominate in production environments in the years ahead.

By and large, the differences among Linux distributions are not cosmically sig-
nificant. In fact, it is something of a mystery why so many different distributions
exist, each claiming “easy installation” and “a massive software library” as its dis-
tinguishing features. It’s hard to avoid the conclusion that people just like to make
new Linux distributions.

Most major distributions include a relatively painless installation procedure, a desk-
top environment, and some form of package management. You can try them out
easily by starting up a cloud instance or a local virtual machine.

Much of the insecurity of general-purpose operating systems derives from their
complexity. Virtually all leading distributions are cluttered with scores of unused
software packages; security vulnerabilities and administrative anguish often come
along for the ride. In response, a relatively new breed of minimalist distributions
has been gaining traction. CoreOS is leading the charge against the status quo and
prefers to run all software in containers. Alpine Linux is a lightweight distribution
that is used as the basis of many public Docker images. Given this reductionist trend,
we expect the footprint of Linux to shrink over the coming years.

By adopting a distribution, you are making an investment in a particular vendor’s
way of doing things. Instead of looking only at the features of the installed software,
it’s wise to consider how your organization and that vendor are going to work with
each other. Some important questions to ask are:

• Is this distribution going to be around in five years?
• Is this distribution going to stay on top of the latest security patches?
• Does this distribution have an active community and sufficient documentation?
• If I have problems, will the vendor talk to me, and how much will that cost?

Table 1.1 lists some of the most popular mainstream distributions.

The most viable distributions are not necessarily the most corporate. For example,
we expect Debian Linux (OK, OK, Debian GNU/Linux!) to remain viable for a long
time despite the fact that Debian is not a company, doesn’t sell anything, and offers
no enterprise-level support. Debian benefits from a committed group of contributors
and from the enormous popularity of the Ubuntu distribution, which is based on it.

A comprehensive list of distributions, including many non-English distributions,
can be found at lwn.net/Distributions or distrowatch.com.

See Chapter 25,
Containers, for more
information about
Docker and containers.

Table 1.1 Most popular general-purpose Linux distributions

Distribution Web site Comments

Arch archlinux.org For those who fear not the command line
CentOS centos.org Free analog of Red Hat Enterprise
CoreOS coreos.com Containers, containers everywhere
Debian debian.org Free as in freedom, most GNUish distro
Fedora fedoraproject.org Test bed for Red Hat Linux
Kali kali.org For penetration testers
Linux Mint linuxmint.com Ubuntu-based, desktop-friendly
openSUSE opensuse.org Free analog of SUSE Linux Enterprise
openWRT openwrt.org Linux for routers and embedded devices
Oracle Linux oracle.com Oracle-supported version of RHEL
RancherOS rancher.com 20MiB, everything in containers
Red Hat Enterprise redhat.com Reliable, slow-changing, commercial
Slackware slackware.com Grizzled, long-surviving distro
SUSE Linux Enterprise suse.com Strong in Europe, multilingual
Ubuntu ubuntu.com Cleaned-up version of Debian

10 Chapter 1 Where to Start

We repeatedly attempted and failed to obtain permission from Red Hat to use their
famous red fedora logo, so you’re stuck with yet another technical acronym. At least
this one is in the margins.

The paragraphs below provide a bit more detail about each of the example systems.

Example Linux distributions
Information that’s specific to Linux but not to any particular distribution is marked
with the Tux penguin logo shown at left.

Debian (pronounced deb-ian, named after the late founder Ian Murdock and his
wife Debra), is one of the oldest and most well-regarded distributions. It is a non-
commercial project with more than a thousand contributors worldwide. Debian
maintains an ideological commitment to community development and open ac-
cess, so there’s never any question about which parts of the distribution are free or
redistributable.

Debian defines three releases that are maintained simultaneously: stable, targeting
production servers; unstable, with current packages that may have bugs and secu-
rity vulnerabilities; and testing, which is somewhere in between.

Ubuntu is based on Debian and maintains Debian’s commitment to free and open
source software. The business behind Ubuntu is Canonical Ltd., founded by entre-
preneur Mark Shuttleworth.

Canonical offers a variety of editions of Ubuntu targeting the cloud, the desktop,
and bare metal. There are even releases intended for phones and tablets. Ubuntu
version numbers derive from the year and month of release, so version 16.10 is
from October, 2016. Each release also has an alliterative code name such as Vivid
Vervet or Wily Werewolf.

Two versions of Ubuntu are released annually: one in April and one in October. The
April releases in even-numbered years are long-term support (LTS) editions that
promise five years of maintenance updates. These are the releases recommended
for production use.

Red Hat has been a dominant force in the Linux world for more than two decades,
and its distributions are widely used in North America and beyond. By the numbers,
Red Hat, Inc., is the most successful open source software company in the world.

Red Hat Enterprise Linux, often shortened to RHEL, targets production environ-
ments at large enterprises that require support and consulting services to keep
their systems running smoothly. Somewhat paradoxically, RHEL is open source
but requires a license. If you’re not willing to pay for the license, you’re not going
to be running Red Hat.

Red Hat also sponsors Fedora, a community-based distribution that serves as an
incubator for bleeding-edge software not considered stable enough for RHEL.

RHEL

 Example systems used in this book 11

W
he

re
 to

 S
ta

rt

Fedora is used as the initial test bed for software and configurations that later find
their way to RHEL.

CentOS is virtually identical to Red Hat Enterprise Linux, but free of charge. The
CentOS Project (centos.org) is owned by Red Hat and employs its lead developers.
However, they operate separately from the Red Hat Enterprise Linux team. The
CentOS distribution lacks Red Hat’s branding and a few proprietary tools, but is
in other respects equivalent.

CentOS is an excellent choice for sites that want to deploy a production-oriented
distribution without paying tithes to Red Hat. A hybrid approach is also feasible:
front-line servers can run Red Hat Enterprise Linux and avail themselves of Red
Hat’s excellent support, even as nonproduction systems run CentOS. This arrange-
ment covers the important bases in terms of risk and support while also minimizing
cost and administrative complexity.

CentOS aspires to full binary and bug-for-bug compatibility with Red Hat Enter-
prise Linux. Rather than repeating “Red Hat and CentOS” ad nauseam, we generally
mention only one or the other in this book. The text applies equally to Red Hat and
CentOS unless we note otherwise.

Other popular distributions are also Red Hat descendants. Oracle sells a rebranded
and customized version of CentOS to customers of its enterprise database software.
Amazon Linux, available to Amazon Web Services users, was initially derived from
CentOS and still shares many of its conventions.

Most administrators will encounter a Red Hat-like system at some point in their
careers, and familiarity with its nuances is helpful even if it isn’t the system of
choice at your site.

Example UNIX distribution
The popularity of UNIX has been waning for some time, and most of the stalwart
UNIX distributions (e.g., Solaris, HP-UX, and AIX) are no longer in common use.
The open source descendants of BSD are exceptions to this trend and continue to
enjoy a cult following, particularly among operating system experts, free software
evangelists, and security-minded administrators. In other words, some of the world’s
foremost operating system authorities rely on the various BSD distributions. Apple’s
macOS has a BSD heritage.

FreeBSD, first released in late 1993, is the most widely used of the BSD derivatives. It
commands a 70% market share among BSD variants according to some usage statis-
tics. Users include major Internet companies such as WhatsApp, Google, and Netflix.

Unlike Linux, FreeBSD is a complete operating system, not just a kernel. Both the
kernel and userland software are licensed under the permissive BSD License, a
fact that encourages development by and additions from the business community.

12 Chapter 1 Where to Start

1.5 Notation and typographical conventions
In this book, filenames, commands, and literal arguments to commands are shown
in boldface. Placeholders (e.g., command arguments that should not be taken lit-
erally) are in italics. For example, in the command

cp file directory

you’re supposed to replace file and directory with the names of an actual file and
an actual directory.

Excerpts from configuration files and terminal sessions are shown in a code font.
Sometimes, we annotate sessions with the bash comment character # and italic
text. For example:

$ grep Bob /pub/phonelist # Look up Bob's phone number
Bob Knowles 555-2834
Bob Smith 555-2311

We use $ to denote the shell prompt for a normal, unprivileged user, and # for the
root user. When a command is specific to a distribution or family of distributions,
we prefix the prompt with the distribution name. For example:

$ sudo su - root # Become root
passwd # Change root's password
debian# dpkg -l # List installed packages on Debian and Ubuntu

This convention is aligned with the one used by standard UNIX and Linux shells.

Outside of these specific cases, we have tried to keep special fonts and formatting
conventions to a minimum as long as we could do so without compromising intel-
ligibility. For example, we often talk about entities such as the daemon group with
no special formatting at all.

We use the same conventions as the manual pages for command syntax:

• Anything between square brackets (“[” and “]”) is optional.
• Anything followed by an ellipsis (“…”) can be repeated.
• Curly braces (“{” and “}”) mean that you should select one of the items

separated by vertical bars (“|”).

For example, the specification

bork [-x] { on | off } filename ...

would match any of the following commands:

bork on /etc/passwd
bork -x off /etc/passwd /etc/smartd.conf
bork off /usr/lib/tmac

 Units 13

W
he

re
 to

 S
ta

rt

We use shell-style globbing characters for pattern matching:

• A star (*) matches zero or more characters.
• A question mark (?) matches one character.
• A tilde or “twiddle” (~) means the home directory of the current user.
• ~user means the home directory of user.

For example, we might refer to the startup script directories /etc/rc0.d, /etc/rc1.d,
and so on with the shorthand pattern /etc/rc*.d.

Text within quotation marks often has a precise technical meaning. In these cases,
we ignore the normal rules of U.S. English and put punctuation outside the quotes
so that there can be no confusion about what’s included and what’s not.

1.6 Units
Metric prefixes such as kilo-, mega-, and giga- are defined as powers of 10; one
megabuck is $1,000,000. However, computer types have long poached these prefixes
and used them to refer to powers of 2. For example, one “megabyte” of memory is
really 220 or 1,048,576 bytes. The stolen units have even made their way into formal
standards such as the JEDEC Solid State Technology Association’s Standard 100B.01,
which recognizes the prefixes as denoting powers of 2 (albeit with some misgivings).

In an attempt to restore clarity, the International Electrotechnical Commission has
defined a set of numeric prefixes (kibi-, mebi-, gibi-, and so on, abbreviated Ki, Mi,
and Gi) based explicitly on powers of 2. Those units are always unambiguous, but
they are just starting to be widely used. The original kilo-series prefixes are still
used in both senses.

Context helps with decoding. RAM is always denominated in powers of 2, but net-
work bandwidth is always a power of 10. Storage space is usually quoted in pow-
er-of-10 units, but block and page sizes are in fact powers of 2.

In this book, we use IEC units for powers of 2, metric units for powers of 10, and
metric units for rough values and cases in which the exact basis is unclear, undoc-
umented, or impossible to determine. In command output and in excerpts from
configuration files, or where the delineation is not important, we leave the original
values and unit designators. We abbreviate bit as b and byte as B. Table 1.2 on the
next page shows some examples.

The abbreviation K, as in “8KB of RAM!”, is not part of any standard. It’s a comput-
erese adaptation of the metric abbreviation k, for kilo-, and originally meant 1,024
as opposed to 1,000. But since the abbreviations for the larger metric prefixes are
already upper case, the analogy doesn’t scale. Later, people became confused about
the distinction and started using K for factors of 1,000, too.

Most of the world doesn’t consider this to be an important matter and, like the use
of imperial units in the United States, metric prefixes are likely to be misused for

14 Chapter 1 Where to Start

Table 1.2 Unit decoding examples

Example Meaning

1kB file A file that contains 1,000 bytes
4KiB SSD pages SSD pages that contain 4,096 bytes
8KB of memory Not used in this book; see note on page 13
100MB file size limit Nominally 108 bytes; in context, ambiguous
100MB disk partition Nominally 108 bytes; in context, probably 99,999,744 bytes a

1GiB of RAM 1,073,741,824 bytes of memory
1 Gb/s Ethernet A network that transmits 1,000,000,000 bits per second
6TB hard disk A hard disk that stores about 6,000,000,000,000 bytes

a. That is, 108 rounded down to the nearest whole multiple of the disk’s 512-byte block size

the foreseeable future. Ubuntu maintains a helpful units policy, though we suspect
it has not been widely adopted even at Canonical; see wiki.ubuntu.com/UnitsPolicy
for some additional details.

1.7 Man pages and other on-line documentation
The manual pages, usually called “man pages” because they are read with the man
command, constitute the traditional “on-line” documentation. (Of course, these days
all documentation is on-line in some form or another.) Program-specific man pages
come along for the ride when you install new software packages. Even in the age
of Google, we continue to consult man pages as an authoritative resource because
they are accessible from the command line, typically include complete details on a
program’s options, and show helpful examples and related commands.

Man pages are concise descriptions of individual commands, drivers, file formats,
or library routines. They do not address more general topics such as “How do I in-
stall a new device?” or “Why is this system so damn slow?”

Organization of the man pages
FreeBSD and Linux divide the man pages into sections. Table 1.3 shows the basic
schema. Other UNIX variants sometimes define the sections slightly differently.

The exact structure of the sections isn’t important for most topics because man
finds the appropriate page wherever it is stored. Just be aware of the section defi-
nitions when a topic with the same name appears in multiple sections. For exam-
ple, passwd is both a command and a configuration file, so it has entries in both
section 1 and section 5.

Table 1.3 Sections of the man pages

Section Contents

1 User-level commands and applications
2 System calls and kernel error codes
3 Library calls
4 Device drivers and network protocols
5 Standard file formats
6 Games and demonstrations
7 Miscellaneous files and documents
8 System administration commands
9 Obscure kernel specs and interfaces

 Man pages and other on-line documentation 15

W
he

re
 to

 S
ta

rt

man: read man pages
man title formats a specific manual page and sends it to your terminal through
more, less, or whatever program is specified in your PAGER environment variable.
title is usually a command, device, filename, or name of a library routine. The sec-
tions of the manual are searched in roughly numeric order, although sections that
describe commands (sections 1 and 8) are usually searched first.

The form man section title gets you a man page from a particular section. Thus, on
most systems, man sync gets you the man page for the sync command, and man
2 sync gets you the man page for the sync system call.

man -k keyword or apropos keyword prints a list of man pages that have keyword
in their one-line synopses. For example:

$ man -k translate
objcopy (1) - copy and translate object files
dcgettext (3) - translate message
tr (1) - translate or delete characters
snmptranslate (1) - translate SNMP OID values into useful information
tr (1p) - translate characters
...

The keywords database can become outdated. If you add additional man pages
to your system, you may need to rebuild this file with makewhatis (Red Hat and
FreeBSD) or mandb (Ubuntu).

Storage of man pages
nroff input for man pages (i.e., the man page source code) is stored in directories
under /usr/share/man and compressed with gzip to save space. The man command
knows how to decompress them on the fly.

See page 193 to
learn about envi-
ronment variables.

Table 1.2 Unit decoding examples

Example Meaning

1kB file A file that contains 1,000 bytes
4KiB SSD pages SSD pages that contain 4,096 bytes
8KB of memory Not used in this book; see note on page 13
100MB file size limit Nominally 108 bytes; in context, ambiguous
100MB disk partition Nominally 108 bytes; in context, probably 99,999,744 bytes a

1GiB of RAM 1,073,741,824 bytes of memory
1 Gb/s Ethernet A network that transmits 1,000,000,000 bits per second
6TB hard disk A hard disk that stores about 6,000,000,000,000 bytes

a. That is, 108 rounded down to the nearest whole multiple of the disk’s 512-byte block size

the foreseeable future. Ubuntu maintains a helpful units policy, though we suspect
it has not been widely adopted even at Canonical; see wiki.ubuntu.com/UnitsPolicy
for some additional details.

1.7 Man pages and other on-line documentation
The manual pages, usually called “man pages” because they are read with the man
command, constitute the traditional “on-line” documentation. (Of course, these days
all documentation is on-line in some form or another.) Program-specific man pages
come along for the ride when you install new software packages. Even in the age
of Google, we continue to consult man pages as an authoritative resource because
they are accessible from the command line, typically include complete details on a
program’s options, and show helpful examples and related commands.

Man pages are concise descriptions of individual commands, drivers, file formats,
or library routines. They do not address more general topics such as “How do I in-
stall a new device?” or “Why is this system so damn slow?”

Organization of the man pages
FreeBSD and Linux divide the man pages into sections. Table 1.3 shows the basic
schema. Other UNIX variants sometimes define the sections slightly differently.

The exact structure of the sections isn’t important for most topics because man
finds the appropriate page wherever it is stored. Just be aware of the section defi-
nitions when a topic with the same name appears in multiple sections. For exam-
ple, passwd is both a command and a configuration file, so it has entries in both
section 1 and section 5.

Table 1.3 Sections of the man pages

Section Contents

1 User-level commands and applications
2 System calls and kernel error codes
3 Library calls
4 Device drivers and network protocols
5 Standard file formats
6 Games and demonstrations
7 Miscellaneous files and documents
8 System administration commands
9 Obscure kernel specs and interfaces

16 Chapter 1 Where to Start

man maintains a cache of formatted pages in /var/cache/man or /usr/share/man
if the appropriate directories are writable; however, this is a security risk. Most sys-
tems preformat the man pages once at installation time (see catman) or not at all.

The man command can search several man page repositories to find the manual
pages you request. On Linux systems, you can find out the current default search
path with the manpath command. This path (from Ubuntu) is typical:

ubuntu$ manpath
/usr/local/man:/usr/local/share/man:/usr/share/man

If necessary, you can set your MANPATH environment variable to override the
default path:

$ export MANPATH=/home/share/localman:/usr/share/man

Some systems let you set a custom system-wide default search path for man pages,
which can be useful if you need to maintain a parallel tree of man pages such as
those generated by OpenPKG. To distribute local documentation in the form of man
pages, however, it is simpler to use your system’s standard packaging mechanism
and to put man pages in the standard man directories. See Chapter 6, Software
Installation and Management, for more details.

1.8 Other authoritative documentation
Man pages are just a small part of the official documentation. Most of the rest, un-
fortunately, is scattered about on the web.

System-specific guides
Major vendors have their own dedicated documentation projects. Many continue
to produce useful book-length manuals, including administration and installation
guides. These are generally available on-line and as downloadable PDF files. Table
1.4 shows where to look.

Although this documentation is helpful, it’s not the sort of thing you keep next to
your bed for light evening reading (though some vendors’ versions would make
useful sleep aids). We generally Google for answers before turning to vendor docs.

Package-specific documentation
Most of the important software packages in the UNIX and Linux world are main-
tained by individuals or by third parties such as the Internet Systems Consortium
and the Apache Software Foundation. These groups write their own documentation.
The quality runs the gamut from embarrassing to spectacular, but jewels such as
Pro Git from git-scm.com/book make the hunt worthwhile.

Table 1.4 Where to find OS vendors’ proprietary documentation

OS URL Comments

Debian debian.org/doc Admin handbook lags behind the current version
Ubuntu help.ubuntu.com User oriented, see “server guide” for LTS releases
RHEL redhat.com/docs Comprehensive docs for administrators
CentOS wiki.centos.org Includes tips, HowTos, and FAQs
FreeBSD freebsd.org/docs.html See the FreeBSD Handbook for sysadmin info

 Other authoritative documentation 17

W
he

re
 to

 S
ta

rt

Supplemental documents include white papers (technical reports), design rationales,
and book- or pamphlet-length treatments of particular topics. These supplemental
materials are not limited to describing just one command, so they can adopt a tu-
torial or procedural approach. Many pieces of software have both a man page and
a long-form article. For example, the man page for vim tells you about the com-
mand-line arguments that vim understands, but you have to turn to an in-depth
treatment to learn how to actually edit a file.

Most software projects have user and developer mailing lists and IRC channels. This
is the first place to visit if you have questions about a specific configuration issue
or if you encounter a bug.

Books
The O’Reilly books are favorites in the technology industry. The business began
with UNIX in a Nutshell and now includes a separate volume on just about every
important UNIX and Linux subsystem and command. O’Reilly also publishes books
on network protocols, programming languages, Microsoft Windows, and other
non-UNIX tech topics. All the books are reasonably priced, timely, and focused.

Many readers turn to O’Reilly’s Safari Books Online, a subscription service that
offers unlimited electronic access to books, videos, and other learning resources.
Content from many publishers is included—not just O’Reilly—and you can choose
from an immense library of material.

RFC publications
Request for Comments documents describe the protocols and procedures used on
the Internet. Most of these are relatively detailed and technical, but some are written
as overviews. The phrase “reference implementation” applied to software usually
translates to “implemented by a trusted source according to the RFC specification.”

RFCs are absolutely authoritative, and many are quite useful for system administra-
tors. See page 376 for a more complete description of these documents. We refer
to various RFCs throughout this book.

man maintains a cache of formatted pages in /var/cache/man or /usr/share/man
if the appropriate directories are writable; however, this is a security risk. Most sys-
tems preformat the man pages once at installation time (see catman) or not at all.

The man command can search several man page repositories to find the manual
pages you request. On Linux systems, you can find out the current default search
path with the manpath command. This path (from Ubuntu) is typical:

ubuntu$ manpath
/usr/local/man:/usr/local/share/man:/usr/share/man

If necessary, you can set your MANPATH environment variable to override the
default path:

$ export MANPATH=/home/share/localman:/usr/share/man

Some systems let you set a custom system-wide default search path for man pages,
which can be useful if you need to maintain a parallel tree of man pages such as
those generated by OpenPKG. To distribute local documentation in the form of man
pages, however, it is simpler to use your system’s standard packaging mechanism
and to put man pages in the standard man directories. See Chapter 6, Software
Installation and Management, for more details.

1.8 Other authoritative documentation
Man pages are just a small part of the official documentation. Most of the rest, un-
fortunately, is scattered about on the web.

System-specific guides
Major vendors have their own dedicated documentation projects. Many continue
to produce useful book-length manuals, including administration and installation
guides. These are generally available on-line and as downloadable PDF files. Table
1.4 shows where to look.

Although this documentation is helpful, it’s not the sort of thing you keep next to
your bed for light evening reading (though some vendors’ versions would make
useful sleep aids). We generally Google for answers before turning to vendor docs.

Package-specific documentation
Most of the important software packages in the UNIX and Linux world are main-
tained by individuals or by third parties such as the Internet Systems Consortium
and the Apache Software Foundation. These groups write their own documentation.
The quality runs the gamut from embarrassing to spectacular, but jewels such as
Pro Git from git-scm.com/book make the hunt worthwhile.

Table 1.4 Where to find OS vendors’ proprietary documentation

OS URL Comments

Debian debian.org/doc Admin handbook lags behind the current version
Ubuntu help.ubuntu.com User oriented, see “server guide” for LTS releases
RHEL redhat.com/docs Comprehensive docs for administrators
CentOS wiki.centos.org Includes tips, HowTos, and FAQs
FreeBSD freebsd.org/docs.html See the FreeBSD Handbook for sysadmin info

18 Chapter 1 Where to Start

1.9 Other sources of information
The sources discussed in the previous section are peer reviewed and written by au-
thoritative sources, but they’re hardly the last word in UNIX and Linux administra-
tion. Countless blogs, discussion forums, and news feeds are available on the Internet.

It should go without saying, but Google is a system administrator’s best friend. Un-
less you’re looking up the details of a specific command or file format, Google or an
equivalent search engine should be the first resource you consult for any sysadmin
question. Make it a habit; if nothing else, you’ll avoid the delay and humiliation of
having your questions in an on-line forum answered with a link to Google.1 When
stuck, search the web.

Keeping current
Operating systems and the tools and techniques that support them change rapidly.
Read the sites in Table 1.5 with your morning coffee to keep abreast of industry trends.

Table 1.5 Resources for keeping up to date

Web site Description

darkreading.com Security news, trends, and discussion
devopsreactions.tumblr.com Sysadmin humor in animated GIF form
linux.com A Linux Foundation site; forum, good for new users
linuxfoundation.org Nonprofit fostering OSS, employer of Linus Torvalds
lwn.net High-quality, timely articles on Linux and OSS
lxer.com Linux news aggregator
securityfocus.com Vulnerability reports and security-related mailing lists
@SwiftOnSecurity Infosec opinion from Taylor Swift (parody account)
@nixcraft Tweets about UNIX and Linux administration
everythingsysadmin.com Blog of Thomas Limoncelli, respected sysadmin a

sysadvent.blogspot.com Advent for sysadmins with articles each December
oreilly.com/topics Learning resources from O’Reilly on many topics
schneier.com Blog of Bruce Schneier, privacy and security expert

a. See also Tom’s collection of April Fools’ Day RFCs at rfc-humor.com

Social media are also useful. Twitter and reddit in particular have strong, engaged
communities with a lot to offer, though the signal-to-noise ratio can sometimes be
quite bad. On reddit, join the sysadmin, linux, linuxadmin, and netsec subreddits.

 1. Or worse yet, a link to Google through lmgtfy.com

 Ways to find and install software 19

W
he

re
 to

 S
ta

rt

HowTos and reference sites
The sites listed in Table 1.6 contain guides, tutorials, and articles about how to ac-
complish specific tasks on UNIX and Linux.

Table 1.6 Task-specific forums and reference sites

Web site Description

wiki.archlinux.org Articles and guides for Arch Linux; many are more general
askubuntu.com Q&A for Ubuntu users and developers
digitalocean.com Tutorials on many OSS, development, and sysadmin topics a

kernel.org Official Linux kernel site
serverfault.com Collaboratively edited database of sysadmin questions b

serversforhackers.com High-quality videos, forums, and articles on administration

a. See digitalocean.com/community/tutorials
b. Also see the sister site stackoverflow.com, which is dedicated to programming but useful for sysadmins

Stack Overflow and Server Fault, both listed in Table 1.6 (and both members of
the Stack Exchange group of sites), warrant a closer look. If you’re having a prob-
lem, chances are that somebody else has already seen it and asked for help on one
of these sites. The reputation-based Q&A format used by the Stack Exchange sites
has proved well suited to the kinds of problems that sysadmins and programmers
encounter. It’s worth creating an account and joining this large community.

Conferences
Industry conferences are a great way to network with other professionals, keep tabs
on technology trends, take training classes, gain certifications, and learn about the
latest services and products. The number of conferences pertinent to administra-
tion has exploded in recent years. Table 1.7 on the next page highlights some of
the most prominent ones.

Meetups (meetup.com) are another way to network and engage with like-minded
people. Most urban areas in the United States and around the world have a Linux
user group or DevOps meetup that sponsors speakers, discussions, and hack days.

1.10 Ways to find and install software
Chapter 6, Software Installation and Management, addresses software provision-
ing in detail. But for the impatient, here’s a quick primer on how to find out what’s
installed on your system and how to obtain and install new software.

Modern operating systems divide their contents into packages that can be installed
independently of one another. The default installation includes a range of starter
packages that you can expand and contract according to your needs. When adding

20 Chapter 1 Where to Start

Table 1.7 Conferences relevant to system administrators

Conference Location When Description

LISA Varies Q4 Large Installation System Administration
Monitorama Portland June Monitoring tools and techniques
OSCON Varies (US/EU) Q2 or Q3 Long-running O’Reilly OSS conference
SCALE Pasadena Jan Southern California Linux Expo
DefCon Las Vegas July Oldest and largest hacker convention
Velocity Global Varies O’Reilly conference on web operations
BSDCan Ottawa May/June Everything BSD from novices to gurus
re:Invent Las Vegas Q4 AWS cloud computing conference
VMWorld Varies (US/EU) Q3 or Q4 Virtualization and cloud computing
LinuxCon Global Varies The future of Linux
RSA San Francisco Q1 or Q2 Enterprise cryptography and infosec
DevOpsDays Global Varies A range of topics on bridging the gap

between development and ops teams
QCon Global Varies A conference for software developers

software, don your security hat and remember that additional software creates ad-
ditional attack surface. Only install what’s necessary.

Add-on software is often provided in the form of precompiled packages as well,
although the degree to which this is a mainstream approach varies widely among
systems. Most software is developed by independent groups that release the soft-
ware in the form of source code. Package repositories then pick up the source code,
compile it appropriately for the conventions in use on the systems they serve, and
package the resulting binaries. It’s usually easier to install a system-specific binary
package than to fetch and compile the original source code. However, packagers
are sometimes a release or two behind the current version.

The fact that two systems use the same package format doesn’t necessarily mean
that packages for the two systems are interchangeable. Red Hat and SUSE both use
RPM, for example, but their filesystem layouts are somewhat different. It’s best to
use packages designed for your particular system if they are available.

Our example systems provide excellent package management systems that include
tools for accessing and searching hosted software repositories. Distributors aggres-
sively maintain these repositories on behalf of the community, to facilitate patching
and software updates. Life is good.

When the packaged format is insufficient, administrators must install software the
old-fashioned way: by downloading a tar archive of the source code and manually
configuring, compiling, and installing it. Depending on the software and the oper-
ating system, this process can range from trivial to nightmarish.

 Ways to find and install software 21

W
he

re
 to

 S
ta

rt

In this book, we generally assume that optional software is already installed rather
than torturing you with boilerplate instructions for installing every package. If there’s
a potential for confusion, we sometimes mention the exact names of the packages
needed to complete a particular project. For the most part, however, we don’t repeat
installation instructions since they tend to be similar from one package to the next.

Determining if software is already installed
For a variety of reasons, it can be a bit tricky to determine which package contains
the software you actually need. Rather than starting at the package level, it’s easier
to use the shell’s which command to find out if a relevant binary is already in your
search path. For example, the following command reveals that the GNU C compiler
has already been installed on this machine:

ubuntu$ which gcc
/usr/bin/gcc

If which can’t find the command you’re looking for, try whereis; it searches a broader
range of system directories and is independent of your shell’s search path.

Another alternative is the incredibly useful locate command, which consults a pre-
compiled index of the filesystem to locate filenames that match a particular pattern.

FreeBSD includes locate as part of the base system. In Linux, the current imple-
mentation of locate is in the mlocate package. On Red Hat and CentOS, install the
mlocate package with yum; see page 174.

locate can find any type of file; it is not specific to commands or packages. For
example, if you weren’t sure where to find the signal.h include file, you could try

freebsd$ locate signal.h
/usr/include/machine/signal.h
/usr/include/signal.h
/usr/include/sys/signal.h
...

locate’s database is updated periodically by the updatedb command (in FreeBSD,
locate.updatedb), which runs periodically out of cron. Therefore, the results of a
locate don’t always reflect recent changes to the filesystem.

If you know the name of the package you’re looking for, you can also use your sys-
tem’s packaging utilities to check directly for the package’s presence. For example,
on a Red Hat system, the following command checks for the presence (and installed
version) of the Python interpreter:

redhat$ rpm -q python
python-2.7.5-18.el7_1.1.x86_64

See Chapter 6
for more informa-
tion about package
management.

22 Chapter 1 Where to Start

You can also find out which package a particular file belongs to:

redhat$ rpm -qf /etc/httpd
httpd-2.4.6-31.el7.centos.x86_64

freebsd$ pkg which /usr/local/sbin/httpd
/usr/local/sbin/httpd was installed by package apache24-2.4.12

ubuntu$ dpkg-query -S /etc/apache2
apache2: /etc/apache2

Adding new software
If you do need to install additional software, you first need to determine the canon-
ical name of the relevant software package. For example, you’d need to translate “I
want to install locate” to “I need to install the mlocate package,” or translate “I need
named” to “I have to install BIND.” A variety of system-specific indexes on the web
can help with this, but Google is usually just as effective. For example, a search for

“locate command” takes you directly to several relevant discussions.

The following examples show the installation of the tcpdump command on each of
our example systems. tcpdump is a packet capture tool that lets you view the raw
packets being sent to and from the system on the network.

Debian and Ubuntu use APT, the Debian Advanced Package Tool:

ubuntu# sudo apt-get install tcpdump
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 tcpdump
0 upgraded, 1 newly installed, 0 to remove and 81 not upgraded.
Need to get 0 B/360 kB of archives.
After this operation, 1,179 kB of additional disk space will be used.
Selecting previously unselected package tcpdump.
(Reading database ... 63846 files and directories currently installed.)
Preparing to unpack .../tcpdump_4.6.2-4ubuntu1_amd64.deb ...
Unpacking tcpdump (4.6.2-4ubuntu1) ...
Processing triggers for man-db (2.7.0.2-5) ...
Setting up tcpdump (4.6.2-4ubuntu1) ...

The Red Hat and CentOS version is

redhat# sudo yum install tcpdump
Loaded plugins: fastestmirror
Determining fastest mirrors
 * base: mirrors.xmission.com
 * epel: linux.mirrors.es.net
 * extras: centos.arvixe.com
 * updates: repos.lax.quadranet.com

RHEL

 Ways to find and install software 23

W
he

re
 to

 S
ta

rt

Resolving Dependencies
--> Running transaction check
---> Package tcpdump.x86_64 14:4.5.1-2.el7 will be installed
--> Finished Dependency Resolution
tcpdump-4.5.1-2.el7.x86_64.rpm | 387 kB 00:00
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
 Installing : 14:tcpdump-4.5.1-2.el7.x86_64 1/1
 Verifying : 14:tcpdump-4.5.1-2.el7.x86_64 1/1
Installed:
 tcpdump.x86_64 14:4.5.1-2.el7
Complete!

The package manager for FreeBSD is pkg.

freebsd# sudo pkg install -y tcpdump
Updating FreeBSD repository catalogue...
Fetching meta.txz: 100% 944 B 0.9kB/s 00:01
Fetching packagesite.txz: 100% 5 MiB 5.5MB/s 00:01
Processing entries: 100%
FreeBSD repository update completed. 24632 packages processed.
All repositories are up-to-date.
The following 2 package(s) will be affected (of 0 checked):

New packages to be INSTALLED:
 tcpdump: 4.7.4
 libsmi: 0.4.8_1

The process will require 17 MiB more space.
2 MiB to be downloaded.
Fetching tcpdump-4.7.4.txz: 100% 301 KiB 307.7kB/s 00:01
Fetching libsmi-0.4.8_1.txz: 100% 2 MiB 2.0MB/s 00:01
Checking integrity... done (0 conflicting)
[1/2] Installing libsmi-0.4.8_1...
[1/2] Extracting libsmi-0.4.8_1: 100%
[2/2] Installing tcpdump-4.7.4...
[2/2] Extracting tcpdump-4.7.4: 100%

Building software from source code
As an illustration, here’s how you build a version of tcpdump from the source code.

The first chore is to identify the code. Software maintainers sometimes keep an in-
dex of releases on the project’s web site that are downloadable as tarballs. For open
source projects, you’re most likely to find the code in a Git repository.

24 Chapter 1 Where to Start

The tcpdump source is kept on GitHub. Clone the repository in the /tmp directo-
ry, create a branch of the tagged version you want to build, then unpack, configure,
build, and install it:

redhat$ cd /tmp
redhat$ git clone https://github.com/the-tcpdump-group/tcpdump.git
<status messages as repository is cloned>
redhat$ cd tcpdump
redhat$ git checkout tags/tcpdump-4.7.4 -b tcpdump-4.7.4
Switched to a new branch 'tcpdump-4.7.4'
redhat$./configure
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking for gcc... gcc
checking whether the C compiler works... yes
...
redhat$ make
<several pages of compilation output>
redhat$ sudo make install
<files are moved in to place>

This configure/make/make install sequence is common to most software written
in C and works on all UNIX and Linux systems. It’s always a good idea to check
the package’s INSTALL or README file for specifics. You must have the develop-
ment environment and any package-specific prerequisites installed. (In the case of
tcpdump, libpcap and its libraries are prerequisites.)

You’ll often need to tweak the build configuration, so use ./configure --help to see
the options available for each particular package. Another useful configure option
is --prefix=directory, which lets you compile the software for installation somewhere
other than /usr/local, which is usually the default.

Installing from a web script
Cross-platform software bundles increasingly offer an expedited installation pro-
cess that’s driven by a shell script you download from the web with curl, fetch, or
wget.2 For example, to set up a machine as a Salt client, you can run the following
commands:

$ curl -o /tmp/saltboot -sL https://bootstrap.saltstack.com
$ sudo sh /tmp/saltboot

The bootstrap script investigates the local environment, then downloads, installs,
and configures an appropriate version of the software. This type of installation is
particularly common in cases where the process itself is somewhat complex, but
the vendor is highly motivated to make things easy for users. (Another good ex-
ample is RVM; see page 232.)

 2. These are all simple HTTP clients that download the contents of a URL to a local file or, optionally,
print the contents to their standard output.

 Where to host 25

W
he

re
 to

 S
ta

rt

This installation method is perfectly fine, but it raises a couple of issues that are
worth mentioning. To begin with, it leaves no proper record of the installation for
future reference. If your operating system offers a packagized version of the soft-
ware, it’s usually preferable to install the package instead of running a web installer.
Packages are easy to track, upgrade, and remove. (On the other hand, most OS-level
packages are out of date. You probably won’t end up with the most current version
of the software.)

Be very suspicious if the URL of the boot script is not secure (that is, it does not start
with https:). Unsecured HTTP is trivial to hijack, and installation URLs are of par-
ticular interest to hackers because they know you’re likely to run, as root, whatever
code comes back. By contrast, HTTPS validates the identity of the server through
a cryptographic chain of trust. Not foolproof, but reliable enough.

A few vendors publicize an HTTP installation URL that automatically redirects to
an HTTPS version. This is dumb and is in fact no more secure than straight-up
HTTP. There’s nothing to prevent the initial HTTP exchange from being intercept-
ed, so you might never reach the vendor’s redirect. However, the existence of such
redirects does mean it’s worth trying your own substitution of https for http in in-
secure URLs. More often than not, it works just fine.

The shell accepts script text on its standard input, and this feature enables tidy, one-
line installation procedures such as the following:

$ curl -L https://badvendor.com | sudo sh

However, there’s a potential issue with this construction in that the root shell still
runs even if curl outputs a partial script and then fails—say, because of a transient
network glitch. The end result is unpredictable and potentially not good.

We are not aware of any documented cases of problems attributable to this cause.
Nevertheless, it is a plausible failure mode. More to the point, piping the output of
curl to a shell has entered the collective sysadmin unconscious as a prototypical
rookie blunder, so if you must do it, at least keep it on the sly.

The fix is easy: just save the script to a temporary file, then run the script in a sep-
arate step after the download successfully completes.

1.11 Where to host
Operating systems and software can be hosted in private data centers, at co-location
facilities, on a cloud platform, or on some combination of these. Most burgeoning
startups choose the cloud. Established enterprises are likely to have existing data
centers and may run a private cloud internally.

See Chapter 6
for more informa-
tion about package
installation.

See page 1007 for
details on HTTPS’s
chain of trust.

26 Chapter 1 Where to Start

The most practical choice, and our recommendation for new projects, is a public
cloud provider. These facilities offer numerous advantages over data centers:

• No capital expenses and low initial operating costs
• No need to install, secure, and manage hardware
• On-demand adjustment of storage, bandwidth, and compute capacity
• Ready-made solutions for common ancillary needs such as databases, load

balancers, queues, monitoring, and more
• Cheaper and simpler implementation of highly available/redundant systems

Early cloud systems acquired a reputation for inferior security and performance, but
these are no longer major concerns. These days, most of our administration work
is in the cloud. See Chapter 9 for a general introduction to this space.

Our preferred cloud platform is the leader in the space: Amazon Web Services (AWS).
Gartner, a leading technology research firm, found that AWS is ten times the size
of all competitors combined. AWS innovates rapidly and offers a much broader
array of services than does any other provider. It also has a reputation for excellent
customer service and supports a large and engaged community. AWS offers a free
service tier to cut your teeth on, including a year’s use of a low powered cloud server.

Google Cloud Platform (GCP) is aggressively improving and marketing its prod-
ucts. Some claim that its technology is unmatched by other providers. GCP’s growth
has been slow, in part due to Google’s reputation for dropping support for popular
offerings. However, its customer-friendly pricing terms and unique features are
appealing differentiators.

DigitalOcean is a simpler service with a stated goal of high performance. Its target
market is developers, whom it woos with a clean API, low pricing, and extremely fast
boot times. DigitalOcean is a strong proponent of open source software, and their
tutorials and guides for popular Internet technologies are some of the best available.

1.12 Specialization and adjacent disciplines
System administrators do not exist in a vacuum; a team of experts is required to
build and maintain a complex network. This section describes some of the roles
with which system administrators overlap in skills and scope. Some administrators
choose to specialize in one or more of these areas.

Your goal as a system administrator, or as a professional working in any of these
related areas, is to achieve the objectives of the organization. Avoid letting politics
or hierarchy interfere with progress. The best administrators solve problems and
share information freely with others.

DevOps
DevOps is not so much a specific function as a culture or operational philosophy.
It aims to improve the efficiency of building and delivering software, especially at

See page 1106 for more
comments on DevOps.

 Specialization and adjacent disciplines 27

W
he

re
 to

 S
ta

rt

large sites that have many interrelated services and teams. Organizations with a
DevOps practice promote integration among engineering teams and may draw
little or no distinction between development and operations. Experts who work in
this area seek out inefficient processes and replace them with small shell scripts or
large and unwieldy Chef repositories.

Site reliability engineers
Site reliability engineers value uptime and correctness above all else. Monitoring
networks, deploying production software, taking pager duty, planning future expan-
sion, and debugging outages all lie within the realm of these availability crusaders.
Single points of failure are site reliability engineers’ nemeses.

Security operations engineers
Security operations engineers focus on the practical, day-to-day side of an infor-
mation security program. These folks install and operate tools that search for vul-
nerabilities and monitor for attacks on the network. They also participate in attack
simulations to gauge the effectiveness of their prevention and detection techniques.

Network administrators
Network administrators design, install, configure, and operate networks. Sites that
operate data centers are most likely to employ network administrators; that’s be-
cause these facilities have a variety of physical switches, routers, firewalls, and other
devices that need management. Cloud platforms also offer a variety of networking
options, but these usually don’t require a dedicated administrator because most of
the work is handled by the provider.

Database administrators
Database administrators (sometimes known as DBAs) are experts at installing
and managing database software. They manage database schemas, perform instal-
lations and upgrades, configure clustering, tune settings for optimal performance,
and help users formulate efficient queries. DBAs are usually wizards with one or
more query languages and have experience with both relational and nonrelational
(NoSQL) databases.

Network operations center (NOC) engineers
NOC engineers monitor the real-time health of large sites and track incidents and
outages. They troubleshoot tickets from users, perform routine upgrades, and co-
ordinate actions among other teams. They can most often be found watching a wall
of monitors that show graphs and measurements.

28 Chapter 1 Where to Start

Data center technicians
Data center technicians work with hardware. They receive new equipment, track
equipment inventory and life cycles, install servers in racks, run cabling, maintain
power and air conditioning, and handle the daily operations of a data center. As a
system administrator, it’s in your best interest to befriend data center technicians
and bribe them with coffee, caffeinated soft drinks, and alcoholic beverages.

Architects
Systems architects have deep expertise in more than one area. They use their expe-
rience to design distributed systems. Their job descriptions may include defining
security zones and segmentation, eliminating single points of failure, planning for
future growth, ensuring connectivity among multiple networks and third parties,
and other site-wide decision making. Good architects are technically proficient and
generally prefer to implement and test their own designs.

1.13 Recommended reading
Abbott, Martin L., and Michael T. Fisher. The Art of Scalability: Scalable Web
Architecture, Processes, and Organizations for the Modern Enterprise (2nd Edition).
Addison-Wesley Professional, 2015.

Gancarz, Mike. Linux and the Unix Philosophy. Boston: Digital Press, 2003.

Limoncelli, Thomas A., and Peter Salus. The Complete April Fools’ Day RFCs.
Peer-to-Peer Communications LLC. 2007. Engineering humor. You can read this
collection on-line for free at rfc-humor.com.

Raymond, Eric S. The Cathedral & The Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. Sebastopol, CA: O’Reilly Media, 2001.

Salus, Peter H. The Daemon, the GNU & the Penguin: How Free and Open Soft-
ware is Changing the World. Reed Media Services, 2008. This fascinating history
of the open source movement by UNIX’s best-known historian is also available at
groklaw.com under the Creative Commons license. The URL for the book itself is
quite long; look for a current link at groklaw.com or try this compressed equiva-
lent: tinyurl.com/d6u7j.

Siever, Ellen, Stephen Figgins, Robert Love, and Arnold Robbins. Linux in
a Nutshell (6th Edition). Sebastopol, CA: O’Reilly Media, 2009.

System administration and DevOps
Kim, Gene, Kevin Behr, and George Spafford. The Phoenix Project: A Novel
about IT, DevOps, and Helping Your Business Win. Portland, OR: IT Revolution
Press, 2014. A guide to the philosophy and mindset needed to run a modern IT
organization, written as a narrative. An instant classic.

 Recommended reading 29

W
he

re
 to

 S
ta

rt

Kim, Gene, Jez Humble, Patrick Debois, and John Willis. The DevOps Hand-
book: How to Create World-Class Agility, Reliability, and Security in Technology Or-
ganizations. Portland, OR: IT Revolution Press, 2016.

Limoncelli, Thomas A., Christina J. Hogan, and Strata R. Chalup. The
Practice of System and Network Administration (2nd Edition). Reading, MA: Ad-
dison-Wesley, 2008. This is a good book with particularly strong coverage of the
policy and procedural aspects of system administration. The authors maintain a
system administration blog at everythingsysadmin.com.

Limoncelli, Thomas A., Christina J. Hogan, and Strata R. Chalup. The Prac-
tice of Cloud System Administration. Reading, MA: Addison-Wesley, 2014. From
the same authors as the previous title, now with a focus on distributed systems and
cloud computing.

Essential tools
Blum, Richard, and Christine Bresnahan. Linux Command Line and Shell
Scripting Bible (3rd Edition). Wiley, 2015.

Dougherty, Dale, and Arnold Robins. Sed & Awk (2nd Edition). Sebastopol,
CA: O’Reilly Media, 1997. Classic O’Reilly book on the powerful, indispensable
text processors sed and awk.

Kim, Peter. The Hacker Playbook 2: Practical Guide To Penetration Testing. Cre-
ateSpace Independent Publishing Platform, 2015.

Neil, Drew. Practical Vim: Edit Text at the Speed of Thought. Pragmatic Bookshelf,
2012.

Shotts, William E. The Linux Command Line: A Complete Introduction. San Fran-
cisco, CA: No Starch Press, 2012.

Sweigart, Al. Automate the Boring Stuff with Python: Practical Programming for
Total Beginners. San Francisco, CA: No Starch Press, 2015.

