

406

19

SLIP and PPP

19.1 I

NTRODUCTION

A typical

UNIX

 environment consists of hosts connected with some type
of network hardware, such as Ethernet. On top of this hardware, hosts
communicate using the

TCP

/

IP

 protocols discussed in Chapter

14

. These
protocols facilitate file transfer among hosts (

rcp

 and

ftp

), interactive
logins (

rlogin

 and

telnet

), and file sharing (

NFS

).

You may find yourself wanting these same network services in places
where an Ethernet connection isn’t readily available: an engineer’s
home, a remote office in Guam, or perhaps on a notebook computer that
you carry when you travel. This chapter discusses the software that is
available to help connect machines that are out of reach of your

LAN

.
You might want to review Chapter

13

,

Configuring the Kernel,

 and
Chapter

8

,

Serial Devices,

 before continuing.

Almost every

UNIX

 machine, from mainframe to notebook, provides one
or more serial ports. Because serial ports are so flexible and so widely
supported, they provide the standard hardware interface used to con-
nect “outlying” machines. Two machines’ serial ports can be wired
together directly or connected via telephone using inexpensive, high-
speed modems.

SLIP

 (Serial Line Internet Protocol) and

PPP

 (Point-to-Point Protocol) are
protocols that allow the transmission of network packets over serial
lines.

SLIP

 and

PPP

 are called “serial line encapsulation protocols” be-

Chapter 19 SLIP and PPP

407

cause they specify how packets must be encoded for transmission on a
slow (and often unreliable) serial line. This chapter discusses how

SLIP

and

PPP

 work, and how to use them to connect a machine to a network.
We’ll also discuss the differences between the two.

19.2 H

OW

 SLIP

AND

 PPP

ARE

 D

IFFERENT

FROM

 UUCP

One of the first questions most people ask about

SLIP

 and

PPP

 is, “What
do

SLIP

 and

PPP

 offer me that systems like

UUCP

 do not?” The answer is
full network connectivity, exactly like you’d get on an Ethernet. You can
use

rlogin

,

rsh

,

ftp

,

rcp

,

telnet

,

NFS

, and even X Windows over a

SLIP

 or

PPP

 connection. Furthermore, multiple connections to (and from)
remote hosts can be active simultaneously.

By comparison,

UUCP

 is a batched, store-and-forward protocol that pro-
vides a relatively limited set of capabilities and commands. However,

UUCP

 is a little easier to set up and is pre-installed on most systems.

19.3 P

ERFORMANCE

 I

SSUES

SLIP

 and

PPP

 provide all the functionality of Ethernet, but at

much

slower speeds. Normal office

LAN

s operate at

10

Mb/

s or

10,000

Kb/

s. A
dial-up connection operates at about

14

Kb/

s.

1

 To put this in perspective,
it takes about

12.5

 minutes to transfer a one-megabyte file across a

SLIP

line. This is usually suitable for home use, as well as for connections to
remote offices that support only a handful of employees. A dial-up

SLIP

or

PPP

 connection is

not

 suitable as the only network connection for your

500

-member engineering group based in Midwest City, Oklahoma.

19.4 SLIP

AND

 PPP C

OMPARED

SLIP

 and

PPP

 are different and independent serial line encapsulation
protocols. But they are similar in spirit and function and thus fit nicely
within a single chapter. As with

vi

 and

emacs

, there are advantages
and disadvantages to both.

SLIP

 is usually the best choice if you are
connecting a house or a small field office.

Both

SLIP

 and

PPP

 require you to add a driver to your kernel to manage
communication between the serial interface and the network portion of
the kernel. Both systems also provide user-level commands that set up
and manage connections to remote hosts.

SLIP

SLIP

 is the hot-rod, “bare bones” encapsulation protocol. It can be traced
back to

TCP

/

IP

 implementations of the early

80

s and was actually imple-

1.

SLIP

 and

PPP

 are normally used at speeds over 9,600 bps. Technically, they can be used on
slower links, but they become insufferably slow.

408

UNIX System Administration Handbook

mented and released to the world on

4.2

BSD

 systems and Sun worksta-
tions by Rick Adams in

1984

.

2

 Today,

SLIP

 is available on a large variety
of machines and operating systems, from

UNIX

 and

VMS

 to

DOS

, Macin-
tosh, and even X terminals.

See page 426 for
an explanation
of Internet

RFC

s.

The original

SLIP

 standard,

RFC

1055

, defined the sequence of characters
used to frame

IP

 packets for transmission across a serial line: nothing
more, nothing less.

SLIP

 as defined in

RFC

1055

 makes no effort to mini-
mize the number of bytes sent across a low-speed serial line; whatever
would normally be contained in an

IP

 packet is transmitted. Since

IP

was designed to solve general network connectivity problems, it is not
as efficient as it could be for the case in which only one or a few hosts
are on the “remote” end of the link.

RFC

1144

is a later

SLIP

 standard (commonly referred to as “compressed
SLIP” or “CSLIP”) which tries to minimize the number of bytes that are
actually transmitted over the serial line. CSLIP uses the following meth-
ods to reduce traffic and improve interactive response time:

• TCP header compression takes advantage of the small number
of active connections over the link and the many fields of the
header that can be predicted in the normal case (no dropped
packets). To reduce the amount of data transmitted, the header
for each connection is stored on both sides of the link, and only
changes are sent. The header that normally accompanies each
packet is reconstructed on the receiving side.

• Type-of-service queueing marks each packet coming from a user
program to indicate whether it’s “interactive.” Modern versions
of both telnet and rlogin request this option. Interactive
packets are inserted at the front of the transmission queue,
improving interactive response time when other programs
(such as ftp) are contending for the serial line.

See Chapter 14 for
more information
about ICMP.

• ICMP filtering avoids the transfer of ICMP packets, which are
used by ping to determine if a remote host is alive. Such
inquiries, if done by many other sites, can consume a significant
percentage of the bandwidth of a slow serial line.

Most implementations of CSLIP are backward-compatible with the origi-
nal SLIP protocol.

Because SLIP is conceptually simpler than PPP, it is easier to debug
when problems arise. A pure CSLIP connection will usually perform
slightly better than an equivalent PPP connection.

2. The idea for SLIP debuted in a TCP/IP package called UNET by 3com and Ford Aerospace.

Chapter 19 SLIP and PPP 409

PPP

Designed by committee, PPP is the “everything and the kitchen sink”
encapsulation protocol. PPP allows the transmission of “multi-protocol”
packets over a single link. It is currently described in RFC1331. PPP is
more flexible than SLIP, which only handles IP packets.

PPP has three main components:

• A method for encapsulating datagrams over serial links

• A Link Control Protocol (LCP) for establishing, configuring, and
testing the data-link connection

• A family of Network Control Protocols (NCPs) for establishing
and configuring different network-layer protocols

These components, complete with state tables that rival the best finite-
state automata final exams, are explained in detail in the RFC; we won’t
discuss them further in this chapter. As with SLIP, there are a number of
PPP implementations (both commercial and free) available for a wide
variety of machines.

PPP does offer some interesting features beyond those of SLIP. In partic-
ular, PPP can encapsulate packets from many protocols simultaneously
over a single serial line. Thus, PPP would be a good choice if you needed
to exchange TCP/IP and DECnet packets between two sites. PPP also has
built-in (but optional) error correction.

What PPP gains in bells and whistles, it loses in simplicity and perfor-
mance over slow lines. That is why we make the general recommenda-
tion that, when possible, SLIP should be used on dial-up lines.

19.5 BASIC CONNECTION MODEL

In order to connect a remote host to a network with SLIP or PPP, you
need to be concerned with three things:

• Your host’s kernel must be able to send IP packets across a
serial line as specified by the SLIP or PPP protocol standard.

• You must have a user-level program that allows you to estab-
lish and maintain SLIP or PPP connections.

• There must be a host on the other end of the serial line that
understands the protocol you are using.

Making your Host Speak SLIP or PPP
See page 262 for
more information
about ifconfig .

The most fundamental requirement for a connection is that your host
be capable of sending and receiving SLIP or PPP packets. In the case of a
UNIX host, this generally involves adding a module to your kernel that
takes network packets (normally stored in a chain of kernel data struc-

410 UNIX System Administration Handbook

tures called mbufs) and places them in the serial device output queue,
and vice-versa. This module is usually placed in the kernel so that it
appears to be just another network interface and can be manipulated
with standard tools such as ifconfig . Kernel modules that perform
this task are discussed later in this chapter.

Controlling SLIP and PPP Links

There are three common ways to manage a serial IP link:

Static You configure a serial port as a network interface. This
option can be used when the connection between the
two machines is a serial cable or a dedicated link.

Dial-up You use a command to dial a modem, log in to a remote
host, and start the remote SLIP or PPP protocol engine.
If this procedure succeeds, the serial port is then config-
ured as a network interface. This option normally
leaves the link up for a long time, which makes it best
suited for a phone line dedicated to this purpose.

Dynamic A daemon watches your serial “network” interfaces to
see when traffic is queued for them. When someone
tries to send a packet, the daemon automatically dials a
modem to establish the connection, transmits the
packet, and if the line goes back to being idle, discon-
nects the line after a reasonable amount of time.

Dynamic dial-up is often used if a phone line is shared
between voice and data, or if the connection involves
long distance or connect-time charges. It’s a common
myth that dynamic dial-up is only available with PPP.

Programs to implement all of these schemes are included with most
versions of SLIP and PPP.

Finding a Host to Talk to
See Chapter 20 for
more information
about the Internet.

If you’re setting up a link between two remote sites within your com-
pany, or between home and work, you can simply install the SLIP or PPP

software on both ends. However, if your intent is to use SLIP or PPP to ob-
tain an Internet connection, you’ll probably need to talk to an Internet
service provider. Many service providers offer dial-up connections to the
public at a reasonable cost. See page 437 for a list of Internet providers
in the United States.

19.6 NETWORK CONCERNS

Because a SLIP or PPP link is similar to an Ethernet connection, some of
the administrative chores performed on a LAN must also be performed

Chapter 19 SLIP and PPP 411

for a serial network connection. Since most links are similar to one
another, sites often use boilerplate configurations that are modified only
slightly for each connection.

On the other hand, since a SLIP or PPP link is not really an Ethernet
connection, a few facilities should be used differently, or not at all. UNIX

programs that assume the network is fast and reliable can easily run
into trouble on a loaded 9,600 bps serial link.

Address Assignment
See page 260 for
more information
about assigning IP
addresses.

Just as you assign an IP address to a new host on your Ethernet, you
need to assign an IP address to each SLIP or PPP interface. There are a
number of ways to assign addresses to these links (including assigning
no addresses at all). We’ll discuss only the simplest method here.

Think of a SLIP or PPP link as a network of its own. That is, a network of
exactly two hosts, often called a “point-to-point” network. You need to
assign a network number to the link just like you would assign a net-
work number to a new Ethernet segment, according to whatever rules
are used at your site. You can pick any two host addresses on that net-
work, and assign one to each end of the link. Other local customs, such
as the interface subnet mask, should be applied as well. Each host then
becomes a “gateway” to the point-to-point network as far as the rest of
the world is concerned.

This method is conceptually simple, but has the flaw of wasting a net-
work number on each SLIP or PPP link. Check the documentation of the
package you’re using for other supported addressing conventions.

Routing
See page 252 for
more information
about routing.

Since SLIP and PPP turn the server into an IP router, you need to be
concerned with IP routing just as you would on a “real” gateway, such as
a machine that connects two Ethernets. The purpose of routing is to
direct packets though gateways so that they can reach their ultimate
destinations. There are a number of different ways to configure routing.

A run-of-the-mill SLIP or PPP client host should have a default route that
forwards packets to its server. Likewise, the server needs to be known
to the other hosts on its network as the gateway to the leaf machine.

Many SLIP and PPP packages handle these routing chores automatically.

Security
See Chapter 23 for
more information
about security.

Security concerns are introduced whenever you add a host to a network.
Since a host connected via SLIP or PPP is a real member of the network,
you need to treat it as such: verify that there are no accounts without

412 UNIX System Administration Handbook

passwords or with insecure passwords, that all appropriate vendor
security fixes are installed, that /.rhosts and /etc/hosts.equiv
files are not overly permissive, and so on.

NFS

See Chapter 17 for
a general descrip-
tion of NFS.

One frequently-asked question is, “Can I use NFS with SLIP or PPP?” The
answer is, “Maybe.” Standard NFS uses the UDP protocol for packet
transport. UDP does not guarantee reliable delivery and does not have
TCP’s congestion control algorithms. Congestion control becomes
extremely important in the case of low-speed lines. Ergo, standard NFS

performs poorly at best over SLIP and PPP. The solution is to use TCP-
based NFS, which is now available from a few major vendors.

Perhaps the biggest problem with NFS over SLIP and PPP is that most
vendors ship their machines with UDP checksums turned off (for back-
ward compatibility with a time long past), and thus will accept packets
that arrive corrupted. If you do not turn on UDP checksums in your ker-
nel and an NFS packet arrives corrupted, it may corrupt your files. This
is one case where PPP outshines SLIP, in that it is possible to have PPP do
link-layer error checking. The solution, again, is to use TCP-based NFS,
which doesn’t have this problem.

X Windows

Since X Windows is based on TCP/IP, it is possible to run X applications
over a SLIP or PPP connection. The X Windows protocol has a fairly high
overhead, and therefore performance across SLIP/PPP is often less than
stellar. Simple font-based applications such as xterm perform accept-
ably, but applications that use bitmap graphics do not. If you’re looking
into a serial connection for the sole purpose of remote X capability, your
best bet is a protocol that is optimized for X over serial lines, such as
XRemote from NCD.

19.7 FLAVORS OF SLIP
There are several freely-available implementations of SLIP. A collection
of them is available via anonymous ftp from ftp.uu.net, in the directory
networking/ip/slip . The cslip-2.7.tar.Z distribution is main-
tained by Craig Leres at Lawrence Berkeley Labs, and is the best refer-
ence copy of UNIX SLIP code. If you’re interested in SLIP for DOS, look in
the networking/ip/ka9q directory on ftp.uu.net.

19.8 FLAVORS OF PPP
Because of PPP’s complexity, you may find that commercial implementa-
tions of PPP are more viable than any freely-available version. The best-

Chapter 19 SLIP and PPP 413

supported package is the one sold by Morning Star Technologies in
Columbus, Ohio. It is available for a variety of systems.

Fewer versions of free PPP are available than free SLIP, but there is still
a decent selection. Look in the networking/ip/ppp directory at
ftp.uu.net. We think dp-3.0.tar.Z by Kirk Smith at Purdue Univer-
sity is probably your best bet.

19.9 WALKTHROUGH: INSTALLING SLIP ON SUNOS
By now, you have a basic understanding of what SLIP and PPP are and
what they can do for you. This section puts hand-waving aside and
walks through an installation step by step. We will describe the instal-
lation of SLIP on a Sun IPX workstation that runs SunOS 4.1.3 and uses a
Telebit T3000 V.32bis modem.

Before starting, collect the following items:

• Telebit T3000 modem
• Telebit T3000 modem manual
• RS-232 cable (male-to-male, straight through)
• Internet addresses you will use for the link
• Login name and password you will use for the link
• Phone number for the remote site

This package is
also included on
the CD-ROM.

Step 1: Obtain the cslip-2.7 distribution. It’s available via ftp from
ftp.uu.net as networking/ip/slip/cslip/cslip-2.7.tar.Z . The
package includes the kernel SLIP module for SunOS and the tip-with-
SLIP program that we’ll use to establish the connection.

Step 2: uncompress and un-tar the file. You may want to print out the
README file for easy reference as you work.

Step 3: Following the instructions in the README under “Kernel Config-
uration,” copy the SLIP include files to the appropriate directories:

% cp common/net/slcompress.h /sys/net
% cp common/net/slip.h /sys/net
% cp sunos4/net/if_slvar.h /sys/net
% cp common/net/slcompress.h /usr/include/net
% cp common/net/slip.h /usr/include/net

Step 4: Copy the source files for the SLIP kernel modules into the kernel
source directory:

% cp common/net/slcompress.c /sys/net
% cp sunos4/net/if_sl.c /sys/net

These files will be compiled along with the rest of the kernel files when
a new kernel containing SLIP is built.

414 UNIX System Administration Handbook

Step 5: Edit /sys/conf.common/files.cmn to add the lines for the
SLIP modules:

net/if_sl.c optional sl INET
net/slcompress.c optional sl INET

This file is used by config when generating a Makefile to control the
compilation of a new kernel. These lines tell config to include the SLIP

kernel modules.

Step 6: Edit /sys/sun/str_conf.c to include the lines that describe
the streams used by SLIP. You’ll see that the file is broken into three
parts: include directives, external declarations, and an initialized struc-
ture. Add the three sets of additions to their appropriate sections:

#include "sl.h"

...

#if NSL > 0
extern struct streamtab if_slinfo;
#endif

...

#if NSL > 0
 { "slip", &if_slinfo },
#endif

These changes make SLIP a valid kernel module that can be used in
association with a TTY stream to implement the SLIP protocol.

Step 7: Edit /sys/sun4c/conf/ machine (where machine is the
name of your kernel configuration file) to add a line that declares the
SLIP device within the kernel:

pseudo-device slN init slattach

N is the number of SLIP interfaces to add. Even if you’re planning to use
only one of your serial ports for a SLIP link, it’s always a good idea to
configure two SLIP devices in the kernel. In case of trouble, you can hook
a cable between the two serial ports on the back of your system and try
to get a SLIP connection running between them.

Step 8: Build a new kernel. This is done by first running config on
your kernel configuration file (machine), to generate a Makefile in
the directory /sys/sun4c/ machine . You can then use make in that
directory to compile a new kernel.

Step 9: Install the new kernel. You’ll need to copy the new kernel into
the root directory, make a backup copy of the running kernel (in case
something goes awry), and then name your new kernel /vmunix so it
will be used the next time the system is booted. Be sure you know how
to boot your old kernel before you reboot.

Chapter 19 SLIP and PPP 415

Step 10: Reboot the machine.

Step 11: cd to the tip directory of the cslip-2.7 package. This direc-
tory contains a version of tip that Doug Kingston modified to know
about login scripts and SLIP, hence the nickname tip-with- SLIP.

Step 12: Edit the Makefile in the tip directory to reflect the type of
modem you’ll be using. Since we’re using a Telebit T3000 for this exam-
ple, we’d edit the file to contain a line defining TELEBIT as a preproces-
sor constant. Many other modems are supported; they are described in
the comment lines of the Makefile .

Step 13: Compile tip-with- SLIP using make.

Step 14: Install tip-with- SLIP. You may want to place it in a directory
with other local executables, such as /usr/local/bin .

See Chapter 8
for more informa-
tion about serial
connectors.

Step 15: Connect the modem to your workstation. In this example, we’d
use a 25-pin straight-through male-to-male RS-232 cable. Since the IPX

really uses a mini DIN-8 connector for its serial ports, we’d also need a
mini DIN-8 to DB-25 converter cable. We’ll assume below that you con-
nect the modem to the ttya port.

Step 16: Configure the machine to use hardware flow control on the
serial port. Software flow control (XON/ XOFF) interferes with the normal
operation of SLIP, and so it should be avoided at all costs. Use the
eeprom command to set the flow control parameter of the port:

eeprom ttya-mode=38400,8,n,1,h

The last argument, h, indicates hardware flow control.

See page 116 for
more information
about soft carrier.

Step 17: Turn off “soft carrier” on the port. Sun ships their machines con-
figured to ignore loss of the carrier detect (CD) line from a modem. While
this sometimes makes things work better “out of the box,” it can cause
disasters when a modem is connected. To turn off soft carrier, delete the
word local after the on column for ttya in /etc/ttytab :

ttya "/usr/etc/getty std.38400" dialup on

You must reboot to make the changes from steps 16 and 17 take effect.

See Chapter 8 for
more about the
/etc/remote file.

Step 18: Add an entry to /etc/remote so that you can use tip to con-
nect to the modem and configure its onboard registers. Since you’re just
using the “standard” mode of tip to do this configuration, you can use
either your system’s original tip or the tip you just compiled. For this
stage, you just need an entry that specifies the port and the baud rate at
which you’ll be talking to the modem:

telebit:dv=/dev/ttya:br#38400

We’ll get to the fancy uses of tip a bit later.

416 UNIX System Administration Handbook

Step 19: Use tip to connect to the modem and configure its registers. A
good configuration for a T3000 would be

AT &F &C1 &D2 S0=0 S2=128 S7=65 S10=25
AT S51=6 S58=2 S68=2 S180=2 S181=1 S225=0
AT M0 V1 E0 X0 Q0 &W &W1

A brief explanation of the meaning of each command code is given in
Table 19.1. You’ll have to adapt the settings to your particular modem.
The ones that really matter are S58 and S68, which set hardware flow
control on the modem.

Step 20: Create an /etc/remote entry to be used by tip-with- SLIP to
establish a SLIP connection. You’ll need to know the phone number of
the site that you’ll be calling, your IP address on the SLIP link, and the IP
address of the host on the other end of the link. If you’re connecting to
an Internet service provider, they can supply you with these addresses.

See page 256 for
information about
subnetting.

If you’re connecting to another site that you administer, you’ll need to
allocate a pair of numbers on a network that you dedicate to the SLIP

link. If you’re going to install a lot of SLIP links, you can use subnetting

a. Some lines have been shaded to improve readability.

Table 19.1 Guide to command codes for example modem configurationa

Code Meaning

AT Tells the modem to listen to you
&F Returns to factory default parameters, a sane baseline
&C1 Uses DCD (pin 8 of the RS-232 port) to indicate carrier detect
&D2 Disconnects when DTR (pin 20) is lost (tip dies or host crashes)
S0=0 Turns off auto-answer
S2=128 Disables the escape-to-command-mode sequence
S7=65 Waits 65 seconds for a connection, reasonable on many modems
S10=25 Waits 2.5 seconds before “loss of carrier,” good on noisy lines
S51=6 Locks modem interface speed at 38,400 bits per second
S58=2 Uses RTS/CTS (hardware) flow control
S68=2 Uses RTS/CTS (hardware) flow control
S180=2 Uses V.42 error correction
S181=1 Requests error correction but doesn’t require it
S255=0 Reloads profile A at power on or when reset
M0 Turns off the speaker
V1 Requests verbose result codes (required by tip)
E0 Turns off command echo (required by tip)
X0 Uses standard result codes
Q0 Returns result codes
&W Writes to non-volatile profile A
&W1 Writes to non-volatile profile B

Chapter 19 SLIP and PPP 417

to create network numbers that allow for only four hosts, thus reducing
the number of class C network numbers you must apply for.

The /etc/remote fields used by tip-with- SLIP are defined in the file
README.SLIP in the tip directory. The ls parameter specifies a file
containing a login script, discussed below. The cc parameter specifies a
command to execute once the connection is established. Usually, the
sliplogin program (also included with cslip) is used. sliplogin
reads /etc/slip.hosts to determine IP addresses and other connec-
tion attributes. See the man page for sliplogin in the sliplogin
directory for more information. Here’s a complete sample configuration:

slip:\
 :ls=/usr/local/slip/etc/annex.login:\
 :cc=/etc/sliplogin Shost2:br#38400:\
 :st=slip:rt:at=telebit:dv=/dev/ttya:du:pn=5551000:

Step 21: Create a login script for use by tip-with- SLIP. This file is also
described in README.SLIP in the tip directory. It is basically an
expect-send script that is used by tip-with- SLIP to log in to the remote
host and start the SLIP server. In this example, the remote host will be a
terminal server that asks for our user name and our password, and
then expects us to send the command slip .

send \r
recv 10/again username:
goto login
label again
send \r
recv 10/error username:
label login
send \dloginname\r
recv 10/error word:
send \dpassword\r
recv 10/error annex:
send \d\d\rslip\r\r
done
label error
fail

Step 22: Establish a SLIP connection and test. Use tip-with- SLIP with
the -s flag to dial the modem, log in, and start the SLIP protocol.

% tip -s slip
[Logging In]
[SLIP Running]
% ping -s xor.com
PING xor.com: 56 data bytes
64 bytes from xor.com (192.108.21.1): seq=0. time=241ms
...

418 UNIX System Administration Handbook

You can use tip-with- SLIP’s -v flag to debug your script. Once the link
is up, you should be able to connect to the host of your choice.

Now you are ready to being using your SLIP connection for day-to-day
communication. Using commands like ping , you can easily write scripts
that monitor the status of the SLIP line and restart tip-with- SLIP when
necessary (if you did not turn on the CSLIP option that disables ping).
Keep in mind that SLIP provides a real network connection and that the
security of hosts attached via SLIP must be carefully monitored.

19.10 CONFIGURING PPP ON SOLARIS 2.4
Solaris 2.4 includes dial-up PPP as part of the standard distribution.
Third-party versions of PPP for Solaris (such as the version from Morn-
ing Star Technologies) generally offer more features and are better sup-
ported. This section discusses the generic version as distributed by Sun.

The PPP package that is integrated into Solaris 2.4 is “asynchronous
PPP,” since it is designed to handle connections over standard serial
lines (such as dial-up modems). It’s an official part of the Solaris operat-
ing system, so you don’t need to perform all the sticky steps of installing
a kernel PPP module. You can verify that you have PPP available with
the following command:

pkginfo | grep ppp

If PPP is installed, you should get a response similar to:

system SUNWapppr PPP/IP Async PPP configuration files
system SUNWapppu PPP/IP Async PPP login service
system SUNWpppk PPP/IP and IPdialup Device Drivers

If PPP is not already installed, you’ll need to install it as a Solaris pack-
age. See the manual page for pkgadd for more details. Table 19.2 lists
the files used to configure and manage Solaris PPP.

Solaris PPP and UUCP cooperate to share dial-out modems. To set up a
PPP connection to a remote site, you should first add the modem and the

Table 19.2 Files Involved with PPP on Solaris 2.4

File Purpose

/etc/init.d/asppp Boot-time startup script for dial-up PPP
/usr/sbin/aspppd Daemon that manages PPP links
/etc/asppp.cf Config file containing list of connections
/usr/sbin/aspppls Login shell for dial-in connections
/var/adm/log/asppp.log PPP activity log file
/tmp/.asppp.fifo Hook into aspppd for dial-in connections

Chapter 19 SLIP and PPP 419

site to the Systems , Dialers , and Devices files in the /etc/uucp
directory. Details on this procedure can be found in Chapter 30.

Once the modem and remote site have been set up in the UUCP files
(including a login script for the remote site in /etc/uucp/Systems),
you need to edit /etc/asppp.cf to configure the connection’s IP

address and associate it with a Systems entry.

Here’s an example /etc/asppp.cf that illustrates a link to “sliphub”
(192.225.32.1) from “myhost” (192.225.32.2):

set IP addresses of the pseudo-interface
ifconfig ipdptp0 plumb 192.225.32.2 192.225.32.1 up

dynamic dialup parameters for pseudo-interface
path

interface ipdptp0
peer_system_name sliphub # Same as in Systems file
inactivity_timeout 600 # time out if idle 10 minutes

Once this is in place, you can start the PPP daemon manually with

/etc/init.d/asppp start

This step should only be necessary the first time. On subsequent
reboots, the PPP daemon will be started by init . If all goes well (check
/var/adm/log/asppp.log), you should be able to reach the remote
site with commands such as telnet and ftp .

19.11 INSTALLING SLIP AND PPP ON OTHER ARCHITECTURES

SLIP and PPP are available for almost every major version of UNIX.
Installation instructions and features vary widely. In some cases, the OS

vendors ship SLIP or PPP either as “unsupported” software or as part of
their “networking” distribution. In other cases, vendors sell them as
separate products. Unfortunately, vendors’ implementations are often
poorly documented or just plain broken, which is why other companies
also support a SLIP/PPP package for those machines.

19.12 DIAL-IN HUBS

You may find that once you begin offering SLIP or PPP connections to
users at home, you have more requests than you have serial ports. A
number of terminal servers offer SLIP/PPP capability, including the
Telebit Netblazer, the Xylogics Annex, and the Livingston Portmaster.
These products often provide a convenient and easily-maintainable
source of serial ports complete with the SLIP or PPP software already
installed. They allow you to establish a dial-in “pool” of modems that
offer SLIP and PPP service to off-site users.

