
44 Chapter 2 Scripting and the Shell

Table 2.2 shows the bash comparison operators for numbers and strings. bash
uses textual operators for numbers and symbolic operators for strings, exactly the
opposite of Perl.

bash shines in its options for evaluating the properties of files (again, courtesy of
its /bin/test legacy). Table 2.3 shows a few of bash’s many file-testing and file-
comparison operators.

Although the elif form is useful, a case selection is often a better choice for clarity.
Its syntax is shown below in a sample routine that centralizes logging for a script.
Of particular note are the closing parenthesis after each condition and the two
semicolons that follow the statement block to be executed when a condition is
met. The case statement ends with esac.

The log level is set in the global variable LOG_LEVEL. The choices
are, from most to least severe, Error, Warning, Info, and Debug.

function logMsg {
message_level=$1
message_itself=$2

Table 2.2 Elementary bash comparison operators

String Numeric True if
x = y x -eq y x is equal to y
x != y x -ne y x is not equal to y
x < ya x -lt y x is less than y

– x -le y x is less than or equal to y
x > ya x -gt y x is greater than y

– x -ge y x is greater than or equal to y
-n x – x is not null
-z x – x is null

a. Must be backslash-escaped or double bracketed to prevent
interpretation as an input or output redirection character.

Table 2.3 bash file evaluation operators

Operator True if

-d file file exists and is a directory
-e file file exists
-f file file exists and is a regular file
-r file You have read permission on file
-s file file exists and is not empty
-w file You have write permission on file

file1 -nt file2 file1 is newer than file2
file1 -ot file2 file1 is older than file2

Scripting.fm Page 44 Wednesday, March 14, 2012 12:05 AM

