
Common filter commands 33

Sc
rip

tin
g/

Sh
el

l

Do not put spaces around the = symbol or the shell will mistake your variable
name for a command name.

When referencing a variable, you can surround its name with curly braces to clar-
ify to the parser and to human readers where the variable name stops and other
text begins; for example, ${etcdir} instead of just $etcdir. The braces are not nor-
mally required, but they can be useful when you want to expand variables inside
double-quoted strings. Often, you’ll want the contents of a variable to be followed
by literal letters or punctuation. For example,

$ echo "Saved ${rev}th version of mdadm.conf."
Saved 8th version of mdadm.conf.

There’s no standard convention for the naming of shell variables, but all-caps
names typically suggest environment variables or variables read from global con-
figuration files. More often than not, local variables are all-lowercase with compo-
nents separated by underscores. Variable names are case sensitive.

Environment variables are automatically imported into bash’s variable name-
space, so they can be set and read with the standard syntax. Use export varname
to promote a shell variable to an environment variable. Commands for environ-
ment variables that you want to set up at login time should be included in your
~/.profile or ~/.bash_profile file. Other environment variables, such as PWD for
the current working directory, are maintained automatically by the shell.

The shell treats strings enclosed in single and double quotes similarly, except that
double-quoted strings are subject to globbing (the expansion of filename-match-
ing metacharacters such as * and ?) and variable expansion. For example:

$ mylang="Pennsylvania Dutch"
$ echo "I speak ${mylang}."
I speak Pennsylvania Dutch.
$ echo 'I speak ${mylang}.'
I speak ${mylang}.

Back quotes, also known as back-ticks, are treated similarly to double quotes, but
they have the additional effect of executing the contents of the string as a shell
command and replacing the string with the command’s output. For example,

$ echo "There are `wc -l < /etc/passwd` lines in the passwd file."
There are 28 lines in the passwd file.

Common filter commands
Any well-behaved command that reads STDIN and writes STDOUT can be used
as a filter (that is, a component of a pipeline) to process data. In this section we
briefly review some of the more widely used filter commands (including some
used in passing above), but the list is practically endless. Filter commands are so
team oriented that it’s sometimes hard to show their use in isolation.

Most filter commands accept one or more filenames on the command line. Only
if you fail to specify a file do they read their standard input.

Scripting.fm Page 33 Wednesday, February 9, 2011 6:30 PM

