
The setuid and setgid bits 153

Th
e

Fi
le

sy
st

em

Each user fits into only one of the three permission sets. The permissions used are
those that are most specific. For example, the owner of a file always has access
determined by the owner permission bits and never the group permission bits. It
is possible for the “other” and “group” categories to have more access than the
owner, although this configuration would be highly unusual.

On a regular file, the read bit allows the file to be opened and read. The write bit
allows the contents of the file to be modified or truncated; however, the ability to
delete or rename (or delete and then recreate!) the file is controlled by the permis-
sions on its parent directory because that is where the name-to-dataspace map-
ping is actually stored.

The execute bit allows the file to be executed. Two types of executable files exist:
binaries, which the CPU runs directly, and scripts, which must be interpreted by a
shell or some other program. By convention, scripts begin with a line similar to

#!/usr/bin/perl

that specifies an appropriate interpreter. Nonbinary executable files that do not
specify an interpreter are assumed to be bash or sh scripts.8

For a directory, the execute bit (often called the “search” or “scan” bit in this con-
text) allows the directory to be entered or passed through while a pathname is
evaluated, but not to have its contents listed. The combination of read and execute
bits allows the contents of the directory to be listed. The combination of write and
execute bits allows files to be created, deleted, and renamed within the directory.

A variety of extensions such as access control lists (see page 159), SELinux (see
page 923), and “bonus” permission bits defined by individual filesystems (see
page 158) complicate or override the traditional nine-bit permission model. If
you’re having trouble explaining the system’s observed behavior, check to see
whether one of these factors might be interfering.

The setuid and setgid bits
The bits with octal values 4000 and 2000 are the setuid and setgid bits. When set
on executable files, these bits allow programs to access files and processes that
would otherwise be off-limits to the user that runs them. The setuid/setgid mech-
anism for executables is described on page 106.

When set on a directory, the setgid bit causes newly created files within the direc-
tory to take on the group ownership of the directory rather than the default group
of the user that created the file. This convention makes it easier to share a direc-
tory of files among several users, as long as they belong to a common group. This
interpretation of the setgid bit is unrelated to its meaning when set on an execut-
able file, but no ambiguity can exist as to which meaning is appropriate.

8. The kernel understands the #! (“shebang”) syntax and acts on it directly. However, if the interpreter is
not specified completely and correctly, the kernel will refuse to execute the file. The shell then makes a
second attempt to execute the script by calling sh.

Filesystem.fm Page 153 Tuesday, September 6, 2011 10:59 PM

